Меню

Настройки частотного преобразователя хендай



Преобразователь частоты hyundai серия n700e: подключение преобразователя, принцип работы

Устройство предназначено для регулирования и стабилизации скорости вращения асинхронных двигателей, работающих от промышленной электросети 380 В. Преобразователь частоты n700e обеспечивает очень высокие динамические показатели, так что, простой и дешевый асинхронный электродвигатель можно использовать там, где раньше можно было применить только электропривод постоянного тока.

Преобразователь частоты n700e (пр-ва Хёндай, Юж. Корея) имеет габариты от 210х275х168 до 806х1200х395 мм (в зависимости от мощности двигателя), вес от 4.2 до 170 кг соответственно и может работать с двигателями мощностью от 5.5 до 350 кВт. Всего в серии есть 24 исполнения по ряду мощностей.

Принцип работы

Силовая часть преобразователя показана на рисунке 1 ниже. Здесь же кратко изображены контуры управления, за исключением внешнего. Такая конфигурация встречается часто, в простых применениях преобразователей. Чтобы эксплуатировать hyundai n700e грамотно и ответственно, потребитель должен в общих чертах представлять себе его устройство и принцип работы. Полезно сделать это еще до приобретения, чтобы читать инструкцию по эксплуатации без лишних трудностей.

На рисунке 1 диодный мост (выпрямитель) D1-6 выпрямляет сетевое трехфазное напряжение, а конденсатор C накапливает небольшой запас энергии для сглаживания пульсации. Дроссель L подавляет помехи, идущие в сеть от преобразователя. Мост на транзисторах IGBT (инвертор) T1-6 использует выпрямленное напряжение для питания обмоток двигателя.

С этой целью производится периодическое открывание транзисторов (ключей) инвертора по определенному алгоритму.

Драйверы ic1-3 служат для управления ключами — они преобразуют импульсы ШИМ (широтно-импульсного модулятора) в ток управления затворами транзисторов. Важной функцией драйвера является блокировка сквозного тока, который мгновенно способен вывести плечо моста из строя (любую пару из верхнего и нижнего ключа).

Если открыт верхний ключ, то обязательно должен быть закрыт нижний с ним в паре ключ. Ток будет протекать через нижний ключ другого плеча. Из этого становится понятно, что любая обмотка двигателя может быть присоединена к источнику питания (конденсатору C) в любой полярности. Тем самым и обеспечивается возможность протекания переменного тока через обмотки двигателя.

Работа внутреннего контура управления обеспечивается датчиками тока h1-3. Также необходима информация о напряжении между обмотками. Все эти данные являются обратной связью для сигнального процессора, который непосредственно управляет модулятором ШИМ.

Благодаря индуктивности обмоток двигателя ток в них нарастает не мгновенно (один из законов коммутации в электротехнике), что дает возможность управлять им при помощи времени, то есть ширины импульса или, другими словами, длительности открытого состояния ключей.

Моменты запаздывания тока по каждой фазе обеспечиваются аналогично, своевременным подключением и отключением обмоток в нужной полярности. Все это становится возможным благодаря тому, что частота ШИМ составляет несколько тысяч Гц, что значительно больше частоты формируемых синусоид и обеспечивает их квантование (вместе с частотой опроса датчиков).

Теперь ясно, что при помощи ШИМ можно управлять и частотой моделируемого переменного напряжения, и силой тока в обмотках. Это открывает очень большие возможности.

ВНИМАНИЮ ИНЖЕНЕРОВ-МЕХАНИКОВ! Это уравнивает громоздкие, сложные и дорогие традиционные электроприводы постоянного тока и дешевые, простые асинхронные моторы. Более того! Динамика, которую обеспечивает преобразователь частоты n700e, лучше любого варианта с приводом постоянного тока.

При помощи задания частоты можно эффективно управлять скоростью вращения двигателя, а при помощи задания тока — их крутящим моментом (хотя в действительности эти параметры имеют связь между собой). Поскольку подключаемый двигатель представляется внутри преобразователя его математической моделью, то никаких дополнительных датчиков (тахометров и датчиков нагрузки) не требуется.

По току и напряжению всегда можно динамически рассчитать момент и скорость с приемлемой для приводов точностью. В этом и состоит принцип векторного управления, который осуществляет преобразователь частоты hyundai n700e.

Подключение преобразователя

На рисунке 2 изображена схема подключения наиболее важных цепей, включая управление. Выбирать преобразователь из модельного ряда необходимо в соответствии с мощностью выбранного двигателя, это быстрее окупится. В инструкции по эксплуатации есть таблица для выбора модели. Все модели имеют одинаковую схему подключения.

Клеммы PD P RB и N предназначены для целей, предназначенных для рекуперативного торможения. Перемычка установлена на заводе по умолчанию. Ее можно заменить на реактор постоянного тока. При работе с двигателями небольшой мощности энергия торможения (когда двигатель работает в режиме генератора) возвращается в конденсаторы C. Избыток энергии компенсируется внутренней цепью из резистора и ключа, включенных последовательно. (На схеме рисунка 1 они не показаны для простоты).

Моторы средней мощности способны заряжать конденсаторы до опасных значений (более 400 В) и нуждаются в использовании тормозных резисторов, которые шунтируют конденсаторы. Такие резисторы подключаются внешним образом к клеммам RB и P (См. инструкцию.)

Наиболее мощные моторы, работающие в условиях длительного торможения (шахтные подъемники, краны), требуют использования специальных внешних тормозных прерывателей. Это комбинация мощных резисторов с хорошим охлаждением и ключей, управляемых ШИМ, для регулирования нагрузочной способности. Такое решение используется при мощностях двигателей от 30 до 150 кВт.

Читайте также:  Инструкция по настройке starnet ar800 для adsl

Преобразователь частоты n700e имеет сигнальные реле, которые позволяют судить о его текущем состоянии при интегрировании во внешние системы автоматизации. Контакты AL0-AL2 замыкаются при аварийном состоянии преобразователя. Контакты RN0-RN1 замыкаются при выполнении определенного условия (программируется потребителем).

Для управления от логических контроллеров или релейных схем (при согласовании с помощью транзисторных каскадов с открытым стоком или истоком) имеется группа контактов: P24 – питание внешних ключей, 1 – 6 входная логика (все функции программируются) и CM1 – цифровая земля. Из функций доступны: реверс, ступенчатое управление скоростью (16 поз.) и функция толчка – эта функция компенсирует малый начальный крутящий момент, свойственный асинхронным двигателям.

Клемма FM – это аналоговый вывод частоты модулятора (на вольтметре 0-10В). Эта величина пропорциональна скорости вращения, но не следует путать ее с самой скоростью! Скольжение асинхронных двигателей сильно зависит от нагрузки.

Клеммы H, O и L служат для подключения резистора (L – аналоговая земля, может не допускать соединения с CM1, см. инструкцию). Резистор 1 кОм 1 Вт проволочный, выполняет функцию регулировки скорости. Клемма OI выполняет аналогичную роль, но здесь для управления используется токовая петля 16 мА.

Помимо прочего, имеется интерфейс RS-485 для дистанционного управления и местный пульт с дисплеем для задания настроек. Клемма G – обязательное заземление корпуса преобразователя.

Преобразователь частоты n700e позволяет программировать все динамические характеристики двигателя:

  • скорость вращения;
  • направление вращения;
  • вращающий момент (с перегрузкой 1.5);
  • характеристику разгона;
  • характеристику торможения;
  • пусковой момент;
  • функция ПИД-регулятора.

Подготовка к работе

Если используется стандартный двигатель (тот, для которого преобразователь настроен по умолчанию) то ввод в эксплуатацию будет наиболее простым. Стандартный двигатель подразумевает указанную мощность и 4 полюса (1500 об/мин для 50 Гц). Выполнив подключения и включив питание, следует убедиться, что на пульте оператора горит светодиод Power. Если все идет нормально, можно приступать к конфигурированию преобразователя под рабочее окружение. Здесь возможно несколько вариантов и это тема для отдельной статьи.

ВНИМАНИЕ! При отключении преобразователя, следует выждать не менее 10 минут, во избежание поражения током. За это время должны разрядиться фильтрующие конденсаторы в цепи постоянного тока.

Настройка преобразователя n700e

После выполнения всех необходимых подключений и их проверки, потребитель должен инициализировать преобразователь для работы бессенсорного векторного управления, если он использует нестандартный двигатель. По причине большой сложности этой процедуры производитель предусмотрел процедуру автонастройки для двигателей, отличающихся от рекомендованных по умолчанию. К счастью для потребителей, это оказывается возможным.

С помощью пульта оператора необходимо, после подачи питания, войти в меню: FUNC, выбрать функцию H01 = 1, а затем остальные параметры для всей этой группы функций: мощность, число полюсов, номинальный и холостой токи, скольжение, сопротивление обмоток, индуктивность, и т.п. Часть этих параметров может потребовать специализированных измерений или, в крайнем случае, электротехнических расчетов.

Частотный преобразователь n700e корейской компании Hyundai хорошо зарекомендовал себя у потребителей. При отличных эксплуатационных качествах и надежности он имеет сравнительно небольшую цену.

Источник

Настройки частотного преобразователя хендай

Несмотря на схемотехнические и программные баги у Hyundai в реализации интерфейса и протокола, я запустил полное управление по RS-485 и всё неплохо работает. В связи с невозможностью изменения уставки по интерфейсу, пришлось отказаться от ПИД-регуляторов, встроенных в частотные преобразователи, в пользу регуляторов программно реализованных на ПЛК. Хотя отказаться пришлось бы в любом случае, т.к. лишние провода теперь не нужны и отпала необходимость в подключении датчика к ПЧ для реализации обратной связи. Да и программное управление частотой ПЧ открывает множество возможностей, таких как ручное управление частотой с панели или визуализации, режим прокрутки с панели для проверки работоспособности электродвигателя, периодическая автоматическая прокрутка двигателя для защиты от заклинивания.

Физическое подключение

К клемме RXP прикручиваем A, к RXNB. Собственно всё.
Если планируется подключать несколько преобразователей в одну сеть, то сначала необходимо аккуратно выпаять терминальные резисторы на плате управления.

Подключение в конфигурации ПЛК (для CoDeSys 2.3)

Моменты

Остался один неприятный момент: если вы хотите изменять через RS-485 параметры A01 и A02 (источники задания частоты и пуска), то необходимо задействовать один дискретный выход и соответственно два провода на каждый частотник в сети для реализации сброса этого частотника через вход на клеммах. Дело тут в наложении двух непродуманных особенностей — со стороны ПЛК и со стороны преобразователя Hyundai:

  1. В программах для ОВЕН ПЛК я использую конфигуратор CoDeSys для реализации связи через Modbus. При подаче питания на ПЛК, ещё до запуска основной программы начинается пересылка по интерфейсам того, что хранится в модулях Modbus, а именно — отсылка всем slave-устройствам нулей по указанным адресам регистров.
  2. В Hyundai N700E при изменении (только по интерфейсу RS-485) параметра, отвечающего за источник команды «пуск» (A02), на 0 (пуск от кнопки «run» на операторской панели) преобразователь частоты автоматически запускается и остановить его по интерфейсу RS-485 — невозможно, пуск/останов ведь теперь осуществляются через панель, а в преобразователе стоит запрет на изменение параметров во время управления электродвигателем. Замкнутый круг.
Читайте также:  Ведьмак 3 интерфейс настройка

Получается так, что при первом запуске ПЛК (после пропадания напряжения на объекте, например) в частотник передается сигнал, изменяющий параметр A02 на 0, частотник запускается и всё. его не остановить. Только подачей логической единицы на клемму N700E, настроенную на сброс. А уже после остановки необходимо изменять A02.

В итоге — помимо двух проводов RS-485 необходимо кидать ещё два и задействовать драгоценный дискретный выход ПЛК. Решить проблему можно проще — отказаться от использования Modbus из конфигурации и использовать библиотечный. Но до этого руки всё не дойдут — как дойдут напишу пост об этом.

Выводы

Выводить особо нечего) Подключается всё очень просто — прикручиванием двух проводов, настраивается интерфейс стандартно, без сложностей с Modbus-командами и регистрами. Описанные проблемы очень специфичны и решаемы, решения их я описал как можно подробнее.

Из полезностей предлагаю вам небольшой список параметров частотника Hyundai N700E (актуально и для моделей N50, N100) и их адреса для управления через интерфейс RS-485 по протоколу Modbus RTU. Некоторые параметры не описаны в документации, а найдены вручную методом проб и ошибок.

если табличка криво отображается — уменьшите масштаб отображения в браузере — Ctrl+колесико вниз

Источник

Как запустить и настроить частотный преобразователь — инструкция для чайников

Его называют инвертор, частотный регулятор или просто «частотник». Зачем же нужен этот черный ящик и как его настроить? Попробуем разобраться на примере Inovance MD310.

Преобразователь частоты — это силовой электронный блок, который является посредником между системой управления и электродвигателем. Он обеспечивает питание для двигателя, защищает его и задаёт необходимый режим работы — разгон, торможение или постоянное изменение скорости.

Для примера возьмем шлифовальный станок, который часто можно встретить в промышленном цеху или в столярной мастерской. Для качественной работы станка движение должно осуществляться в двух направлениях, скорость вращения ленты — меняться плавно, а аварийная кнопка мгновенно отключать питание. Без преобразователя частоты тут точно не обойтись.


Рис.1 Внешний вид шлифовального станка.

Подключение силовых цепей

Все провода, подключаемые к частотному преобразователю, можно разделить на 2 группы: силовые и контрольные. Рассмотрим подключение силовых.

Три провода сетевого питания 380 В, 50 Гц — клеммы R, S, T + провод заземления PE. Нейтраль частотному преобразователю не нужна. Даже если она у вас есть, подключать не нужно. А вот провода питания можно подключать в любом порядке. При необходимости чередование фаз можно изменить в программе частотника.

Три провода питания двигателя — клеммы U, V, W + провод заземления PE. На выходе напряжение может меняться от 0 до 380 В, а частота от 0 до 500 Гц. В этом и кроется смысл работы частотного преобразователя — он позволяет изменять скорость двигателя от нуля до номинального значения и даже выше, если это позволяет механика.


Рис.2 Подключение силовых цепей

Подключение цепей управления

С контрольными проводами всё несколько сложнее. Тут нужно хорошо подумать, прежде чем подключать. На выбор целая россыпь дискретных и аналоговых входов и выходов. В документации производители чаще всего публикуют стандартную схему подключения с заводскими настройками, но для каждого механизма на деле нужна своя схема и индивидуальные настройки.


Рис.3 Подключение цепей управления

У нас задача не самая сложная. Для управления шлифовальной машиной достаточно кнопок «Пуск», «Стоп», переключателя «Вперед – Назад» и переменного резистора для изменения скорости вращения, его ещё называют потенциометром.

К дискретным входам DI подключаются сигналы, которые могут принимать одно из двух состояний — «вкл» и «выкл» или логический 0 и 1. В нашей схеме это кнопки «Пуск», «Стоп», переключатель направления и аварийный «грибок». Мы будем использовать кнопки без фиксации, которые уже установлены на станке.

К аналоговым входам AI подключаются сигналы с непрерывно меняющейся величиной тока 4. 20 мА или напряжения 0. 10 В. Это могут быть датчики, сигналы от контроллера или другого внешнего устройства. В нашем случае — это ручка потенциометра, которая обеспечивает плавную регулировку скорости.

Читайте также:  Настройка принтера зебра 2844

Потенциометр или переменный резистор — это регулируемый делитель напряжения с тремя контактами.

» >
Рис.4 Внешний вид потенциометра

На два крайних неподвижных контакта подаётся постоянное напряжение 10 В от частотного преобразователя, а средний подвижный контакт служит для снятия текущей величины напряжения, которая зависит от положения ручки. Если ручка повернута наполовину, значит и напряжение будет только половинное = 5 В. Преобразователь пересчитает напряжение в задание скорости и разгонит двигатель.


Рис.5 Подключение потенциометра

Любой потенциометр не подойдёт, необходим с сопротивлением от 2 до 5 кОм, чтобы аналоговый вход стабильно работал. А ещё он должен быть с удобной ручкой, ведь крутить его придётся постоянно. Мощность может быть любой, даже 0,125 Вт достаточно. Идеально подойдёт XB5AD912R4K7 с сопротивлением 4,7 кОм.

На дискретные — DO и аналоговые выходы AO преобразователь выдает информацию о своем текущем состоянии, скорости или токе двигателя, достижении заданных значений или выходе за их пределы. В нашем случае выходы не используются, поэтому подключать нечего.

Настройка

Недостаточно просто подключить все провода к частотнику, его ещё нужно правильно настроить, чтобы механизм работал стабильно и долго. Для этого в частотном преобразователе несколько сотен параметров. Конечно, все настраивать не придётся, но вот основные — обязательно.

Настройка осуществляется с помощью клавиш на встроенной панели управления. С ними всё предельно просто.

Кнопка PRG отвечает за вход и выход из режима программирования. Кнопки вверх, вниз и вбок осуществляют навигацию внутри меню, а кнопка Enter — подтверждает выбор параметра или его значения.

MF.K — это дополнительная функциональная кнопка, которую можно настроить на необходимое действие, например переключение между местным и дистанционным управлением или смену направления вращения.

Зеленая и красная кнопки — это Пуск и Стоп, если управление осуществляется с панели.

Если запутались, не беда. Нужно несколько раз нажать на кнопку PRG, чтобы вернуться к исходному состоянию.

» >
Рис.6 Внешний вид панели управления

А теперь к параметрированию

Во-первых, необходимо дать понять частотному преобразователю, какой двигатель к нему подключен. Для этого в параметры с F1-01 по F1-05 запишем значения с шильдика двигателя:

F1-01 = 1,5 кВт — номинальная мощность двигателя
F1-02 = 380 В — номинальное напряжение двигателя
F1-03 = 3,75 А — номинальный ток двигателя
F1-04 = 50 Гц — номинальная частота двигателя
F1-05 = 1400 об/мин — номинальная скорость двигателя


Рис.7 Шильдик двигателя

Теперь, когда основные данные о двигателе есть, нужно провести автонастройку. Этот процесс нужен, чтобы частотный преобразователь ещё лучше адаптировался к работе с конкретным двигателем: вычислил сопротивление и индуктивность обмоток. Так управление будет точнее, а экономия энергии — больше.

Для запуска процедуры устанавливаем F1-37 = 1 — статическая автонастройка и нажимаем кнопку «Run» на панели управления. Через пару минут дисплей переходит в исходное состояние и частотник готов к работе.

Далее переведём управление на внешние кнопки и настроим его

В нашем случае подойдёт трёхпроводное управление, где кнопка «Стоп» осуществляет разрешение на работу, кнопка «Старт» — запуск станка, а переключатель выбирает направление вращения.


Рис.8 Схема трёхпроводного управления

Настроим эти параметры:
F0-02 = 1 — управление через клеммы управления
F0-03 = 2 — задание частоты с AI1 (потенциометр)
F4-00 = 1 — пуск
F4-01 = 2 — выбор направления движения
F4-02 = 3 — разрешение работы
F4-03 = 47 — аварийный останов
F4-11 = 3 — режим трёхпроводного управления

Теперь станок начинает оживать, реагирует на нажатие кнопок и вращение ручки скорости. Остаётся настроить время разгона, торможения и проверить на практике удобство использования. Наш частотный преобразователь настроен и готов к использованию!

Защита и безопасность

Преобразователь частоты — умное устройство. После настройки в работу включаются все защитные функции, которые в случае аварии сберегут и сам частотник, и двигатель, и механизм.

Например, при заклинивании: преобразователь вычислит, что ток двигателя намного выше номинального, который мы установили в параметре F1-03 ранее, выдаст ошибку «Перегрузка двигателя» и отключится. Двигатель не перегреется и не сгорит, а механика останется целой.

А если возникла угроза здоровью оператора или поломки оборудования — спасет аварийная кнопка «грибок». При её нажатии преобразователь в мгновение остановит станок и отключит питание. Никто не пострадает!

Вместо заключения

Настройка частотного преобразователя — процесс увлекательный. Порой преобразователь берёт на себя не только управление двигателем, но и целой системой и может заменить даже простой контроллер. К частотнику можно подключать датчики, лампы индикации, реле и даже контакторы. Применение преобразователю можно найти везде: от насосов и конвейеров до сложных станков, подъёмников и лифтов. Главное внимательно изучать документацию и делать всё по порядку, тогда всё обязательно получится.

Источник

Adblock
detector